Data Highlight: Semiconductor bandgap, conduction band, and valence band values

Many thanks go out to Nirala Singh, from UCSB’s Department of Chemical Engineering, for contributing a curated semiconductor band gap data set

Aqueous electrochemistry and photo-electrochemistry have become increasingly important areas of research for groups pursuing water splitting or solar-to-fuel conversion. The energy storage theme continues this week with valuable oxide, sulfide, and phosphide semiconductor materials data curated by Nirala Singh and others in the McFarland group at UCSB. This particular dataset highlights the conduction and valence band levels reported throughout the literature vs. vacuum as well as vs. normal hydrogen electrode (NHE) at neutral pH. Exemplary group-wide efforts to generate data sets such as these truly benefit the greater research community on Citrination, saving others time from searching for materials data throughout literature.